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Multistep radial melting in small two-dimensional classical clusters
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We report on a molecular dynamics study of small classical two-dimensional clusters with ringlike configu-
rations. We focus on the particles motion at low temperatures before the radial and angular melting sets in. It
is shown that in magic number configurations a local radial melting of subshells occur, which is related to the

intershell rotation.
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I. INTRODUCTION

Charged particles in two-dimensional (2D) clusters which
are confined by a parabolic potential order themselves in
shells, if the number of particles is not too large (N<50). A
Mendeleev type of table was constructed in Ref. [1] for these
“classical atoms.” Often, such a shell has a fine structure, it
does not correspond with a well-defined ring, but consists of
a few subshells, i.e., the shell has a nonzero width. In this
paper we consider the small temperature behavior of those
small clusters with ringlike ground state configurations.

The melting of 2D finite size crystals of charged particles
is well studied [1-4]. Clusters consisting of not too many
particles (N <50) do not have a sharply defined melting tem-
perature and its melting proceeds in a two-step process [1].
Initially, there is an orientational disordering characterized
by the relative rotation of neighboring shells in which the
internal order is retained. With further increase in tempera-
ture, intershell diffusion starts and the system melts radially.
In a recent study of the melting properties of a Coulomb
bound cluster it was also found that a structural phase tran-
sition can occur before the system melts [5].

In this paper, we found that the melting process of 2D
classical clusters is much richer than represented by the
above two-step approach. Here, we present a detailed inves-
tigation of the particles motion of small clusters as a function
of temperature before any jumps between shells occur and
thus before the radial melting sets in. We found that the
detailed behavior depends very crucially on the exact ground
state configuration and that temperature induced structural
transitions are possible which lead to an enhanced symmetry
with increasing temperature.

This paper is organized as follows. In Sec. II the model
system and our numerical approach are introduced. Section
IIT discusses the results and in Sec. IV our conclusions are
summarized.

II. MODEL SYSTEM AND NUMERICAL APPROACH

We study the time dependence of a 2D system consisting
of N charged particles confined by a parabolic potential and
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interacting through a Coulomb interaction using molecular
dynamics simulations. Using dimensionless units, the system
of Newton equations which governs the time evolution of the
N particles in the cluster reads
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the potential energy. Here, we used the following units for
the time #'=\2/w, frequency '=wy/v2, length 7’
=(2e*/mew})'?, energy E'=(mwie*/2€%)'3, and tempera-
ture 7" =E'/kg, where w is the confinement strength of the
parabolic potential, m is the mass of a particle and e its
charge, and € is the static dielectric constant of the medium
the particles are moving in.

As the start configuration for the molecular dynamics
simulations the ground state configuration which minimizes
the potential energy of Eq. (2) was used. It was obtained
through a Monte Carlo simulation as explained in Ref. [2].
The set of Newton equations was solved using the velocity
Verlet algorithm (with a typical stepsize of At=10"2 which
was tested to be sufficient to reach convergence). After res-
caling the velocities to obtain the desired temperature, each
simulation at a particular temperature consisted of 10* equili-
bration time steps, followed by typically 10° to 10° time
steps during which data was collected.

In order to study the dynamics of the particles, we calcu-
lated the mean square deviations. To characterize the radial
melting processes we calculate the radial displacements,

12
(ug)= ]72 () = (rd)la?, (3)
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where we introduced the averaged distance between the elec-
trons a=2R,,,./ VN with R, the maximal radius of the sys-
tem. (u,ze) is calculated for each shell separately and N; is the
number of particles in each shell.

The angular melting is investigated using two quantities.
The angular order in each shell is characterized by the angu-
lar intrashell displacements,
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FIG. 1. The ground state configurations for (a) 12, (b) 13, (c) 26,
and (d) 30 particles.
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where i, indicates the nearest neighbor in the same shell and
¢o=2m/N,. The angular order between shells is character-

ized by the angular intershell displacements

N,
) = 23 (o= 0, (o= eI, ()

si=1

where i, indicates the nearest particle from a neighboring
shell. The division in shells and the determination of the
nearest neighbors is made at the beginning of each tempera-
ture run.

Because of the small system size of the studied clusters
there is no definite melting temperature but rather a melting
region. Nevertheless we can define critical temperatures via
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FIG. 2. The radial displacements for the inner and outer shell of
the system of 12 particles as a function of the temperature. The inset
shows the average radial position of each particle.
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FIG. 3. The relative inter- and intrashell displacements for the
same system with 12 particles as considered in Fig. 2. Left scale:
the relative intershell displacements for shell 2 with respect to shell
1, and shell 1 with respect to shell 2 as function of temperature.
Right scale: the relative angular intrashell for both shells as a func-
tion of temperature.

the Lindemann criterion for melting. This implies that melt-
ing occurs when one of the above quantities (u?) approaches
0.1 [6] or 0.05 for each coordinate.

II1. RESULTS

As an example we considered a system containing 12 par-
ticles at low temperatures. The ground state corresponds to
an inner ring with three particles and an outer ring with nine
particles, indicated as (3,9), which is shown in Fig. 1(a). This
is a magic configuration [2], namely it is very stable against
perturbations. The outer shell can be divided into two sub-
shells, the outer subshell of the outer shell consists of six
particles and the inner subshell of the outer shell consists of
three particles, each having a slightly different radius, as in-
dicated by the two rings in the outer shell in Fig. 1(a). Figure
2 shows the radial displacements for both shells as a function
of the temperature. From the Lindemann criterion one finds
that the radial melting for both shells sets in around 7,
=0.0075. Note that there is a remarkable jump in the radial
displacement of the outer ring around 7=0.001. This jump
was never noticed before, probably because one needs rather
accurate simulations for many temperature steps leading to
long calculation times.
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FIG. 4. The radial displacements for the inner and outer shell of
the system of 13 particles as a function of temperature. The inset
shows the average position of each particle.
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FIG. 5. (a) The radial displacements and the average positions
(inset) of the particles for N=26 as a function of temperature. The
numbers correspond to the number of the shell. (b) The correspond-
ing relative intershell deviations for shell 3 with respect to shell 2
and shell 2 with respect to shell 1 as a function of temperature.

This jump can be understood by investigating the average
position of each particle as a function of temperature. These
results are shown in the inset of Fig. 2, where at zero tem-
perature the three-ring structure is clearly seen with the outer
ring showing a fine structure resulting in two subshells.
However, exactly at the temperature where the jump in the
mean square radial deviation occurs for the outer ring, the
distinction between both outer subshells disappears and they
coalesce in a single ring with the radius between the radius
of the previous two subshells. We can conclude that this
jump corresponds to the local melting of the outer rings,
forming a single broader ring. This leads to an increased
symmetry of the system. Consequently, the transition is a
temperature induced structural (phase) transition. In this re-
spect, it is similar to the structural phase transition which
was recently found for certain Coulomb bound clusters [5].

At this jump, the angular order within each ring is not yet
destroyed, as shown in Fig. 3, which shows the relative an-
gular intrashell displacements of both shells. The relative
intershell displacement (also shown in Fig. 3) on the other
hand, is lost at exactly the same temperature where this ra-
dial melting of the outer ring sets in.

As the system of 12 particles is a magic configuration, it
is interesting to see how the above results change for a non-
magic configuration. The ground state configuration for the
system with 13 particles is (4,9) [see Fig. 1(b)]. The radial
displacement for both shells is shown in Fig. 4 and the av-
erage position of the particles in its inset. The outer ring can
now be divided up in three subshells at zero temperature.
With the slightest increase of temperature, they form one
broad ring. This local radial melting goes hand in hand with
the loss of intrashell angular order.

Finally, to show that this local radial melting is a general
property of ringlike configurations, we consider the configu-
rations with 26 and 30 particles. The ground state for 26
particles is (3,9,19) [see Fig. 1(c)]. The first and second (in-
ner) shells form a commensurate configuration, while the
second and third (outer) shells are noncommensurate. The
ground state for 30 particles is a fully magic configuration,
namely (5,10,15) [see Fig. 1(d)]. From Fig. 5(a), which
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FIG. 6. The radial displacements for the three shells of the clus-
ter consisting of 30 particles as a function of temperature. The inset
shows the average position of each particle.

shows the radial displacements and the average positions (in-
set of Fig. 5), one can see that the subshells of the outer shell
melt at very low temperature, while the radial order in the
second subshell is kept until 7=0.0015. At this temperature,
the orientational order between the first and second shell is
also lost, as shown in Fig. 5(b), which shows the relative
intershell deviations. This cluster exhibits both melting be-
haviors found in the previous clusters with N=12 and 13. In
the fully magic configuration of 30 particles, a step occurs in
the radial displacements of shell 2 at 7=0.0025 and shell 3
at T=0.0016, as shown in Fig. 6. The radial order is main-
tained longer in the second shell as it forms a magic configu-
ration with the inner as well as with the outer ring.

IV. CONCLUSIONS

The radial fluctuations of particles confined in small clas-
sical 2D clusters with ringlike configurations are investigated
in the small temperature range before intershell diffusion sets
in using molecular dynamics simulations. Some shells of the
clusters have a fine structure and consist of a few subshells
with slightly different radii. It was shown that the radial or-
der in such a shell is maintained for magic configurations
until the angular order between the different shells is lost. At
this temperature, a jump in the mean square radial displace-
ment is observed, and the different subshells form one broad
ring, while the angular order in the shell is maintained. This
corresponds with a local melting of the shell resulting in
larger radial fluctuations. The other shells are not involved in
this process and stay ordered. After this transition the sym-
metry of the cluster is increased and the particles in the
broadened shell can interchange their positions.

In nonmagic configurations, the radial order in a shell is
lost immediately after the temperature differs from zero, i.e.,
the smallest temperature fluctuations destroy the multisub-
shell order.
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